Genetic Algorithms for the Investment of the Mutual Fund with Global Trend Indicator

Tsung-Jung Tsai, Chang-Biau Yang† and Yung-Hsing Peng
Department of Computer Science and Engineering
National Sun Yat-sen University, Kaohsiung, Taiwan
†cbyang@cse.nsysu.edu.tw

Abstract

Our investment strategy for the world mutual funds can be divided into three main parts. First, the global trend indicator (GTI) is defined for evaluating the price change trend of the funds in the future. Then, based on GTI, we derive the monitoring indicator (MI) to measure whether the fund market is in the bull or bear state. Finally, to decide the signal for buying or selling funds, a genetic algorithm is invoked to dynamically select funds according to their past performances (profitability). In our experimental results from January 1999 to December 2008 (10 years in total), we achieve the annual profit higher than 10%.

Key words: fund, indicator, genetic algorithm, investment strategy

1 Introduction

Mutual fund is a very popular investment tool. A fund collects the capital of the investors, and then its manager uses the capital to invest in the stock markets, foreign exchange markets, bond markets and so on. However, the financial market is chaotic, complex and full of uncertainty. Hence, making money in the financial market is a very difficult task that is worth study.

To make money in the financial market, some of researchers usually analyze these time series with some useful tools such as support vector machine (SVM) [3, 4, 6, 10], genetic complementary learning (GCL) [9], genetic algorithms (GA) [5] and neural networks (NN) [5]. In these ways, they try to predict the price or trend in the future. The goals of these researchers are to raise the prediction accuracy and to make more money in the stock market, based on their learning models.

From the aspect of measuring stocks, some researchers use root mean square deviation (RMSE) [4, 6] and normalized mean squared error (NMSE) [10] to measure the performance of their stock forecast. Others adopted the prediction accuracy [3, 5, 9] to evaluate their experimental results. However, we want to address that most researchers do not consider the transaction fee, which has a strong impact on the profit of the investment. Therefore, one can see that the these models cannot be applied to general stock markets. In this paper, we propose a new investment strategy that achieves high annual return when considering the transaction fee. Hence, compared with other existing results, our strategy is more suitable for real investment.

The rest of this paper is organized as follows. Section 2 explains required notations and techniques. Next, we propose our main algorithm in Section 3 and show the experimental results in Section 4. Finally, we give our conclusions in Section 5.

2 Preliminary

2.1 The ROI and Average Annualized Return

We use the notation $ROI^x_{t_1, t_2}$ to represent the performance of a fund $x$ from day $t_1$ to $t_2$. For easy description, we adopt $ROI_T(x, t)$ to represent the performance of $x$ for the latest period $T$ dating back from current day $t$. In our experiments, we refer to the average annualized return as a fair comparison for various strategies. The formula of the average annualized return is described as follows.

$$FV = PV (1 + \tau)^n,$$

where $PV$ (present value) is the initial capital, $FV$ (future value) is the return capital, $\tau$ is the average annualized return, and $n$ is the number
of years. The average annualized return is also known as the *geometric average return*.

2.2 Technical Analysis - SMA (Simple Moving Average)

**Simple moving average (SMA)** [8] is a very popular and easy-to-use tool. SMA computes the average of recent prices over a period. SMA can be used to smoothen the series of recent prices, and to reduce the volatility of prices. The formula of SMA is given as follows.

\[ SMA_T(t) = \frac{\sum_{i=0}^{T-1} price(t-i) / T,} \]

where \( T \) is a period for calculating prices, \( t \) represents the current day, and \( price(t) \) represents the price at day \( t \). In Section 3, we will use SMA to design our indicators.

2.3 Genetic Algorithms

The *genetic algorithm* (GA) [7] is a tool for handling optimization problems [2]. GA is one kind of evolutionary algorithms, which simulates the survival principle (survival of the fittest) of creatures in the nature. In GA, the natural environment is simulated by computational operations including selection, crossover and mutation. In the next section, we will adopt GA to select good funds for investment.

3 Our Fund Investment Strategy

In a bear market, buying mutual funds is forbidden and all of the investor’s fund holdings are redeemed. Our model allows funds to be invested in a bull market. In the buying procedure, the priorities of funds are determined by genetic algorithms. We rank all funds by the ordered priorities and create a ranking list. With the ranking list, we redeem funds if their ranks do not locate within the *replacement threshold* \( \gamma \), which is predefined by the user. Here, with the replacement scheme, we can always keep better funds and remove bad funds. Then new funds will be picked sequentially (according to their ranks) until the size of our portfolio reaches the predefined limit \( N \). In our portfolio, we repeat this procedure until the end of investment.

In the following subsections, we first define the Global Trend Indicator (GTI) and the Monitoring Indicator (MI). And then, we explain how to select funds with genetic algorithms.

3.1 The Global Trend Indicator

Let \( F \) denote the set of funds to be considered. The formula of our global trend indicator (GTI) is given as follows.

\[ ROI_{1D}(x,t) = \frac{NAV_{x}(t) - NAV_{x}(t-1)}{NAV_{x}(t-1)}, \quad x \in F, \]

\[ U(t) = \{ x | NAV_{x}(t) > NAV_{x}(t-1), \quad x \in F \}, \]

\[ D(t) = \{ x | NAV_{x}(t) \leq NAV_{x}(t-1), \quad x \in F \}, \]

\[ UM(t) = \frac{\sum_{x \in U(t)} ROI_{1D}(x,t)}{\sum_{x \in F} ROI_{1D}(x,t)}, \]

\[ DM(t) = \frac{\sum_{x \in D(t)} ROI_{1D}(x,t)}{\sum_{x \in F} ROI_{1D}(x,t)}, \]

\[ GTI(t) = GTI(t-1) \times \{ 1 + UM(t) + DM(t) \} \]

\( GTI(0) = 100 \) (base value), where \( t \) represents a trading day, \( NAV_{x}(t) \) represents the NAV for fund \( x \) at day \( t \), \( ROI_{1D}(x,t) \) (the *daily return*) means the percentage of the price change for the fund \( x \) from day \( t-1 \) to day \( t \).

3.2 The Monitoring Indicator

The monitoring indicator (MI) is derived from GTI and its four simple moving average indicators. The period of the four moving averages are 3, 5, 7 and 9, denoted as \( SMA_{3}(t) \), \( SMA_{5}(t) \), \( SMA_{7}(t) \) and \( SMA_{9}(t) \), respectively. The formula of our monitoring indicator \( MI(t) \) is given in Figure 1.

Next, we describe how to use \( MI \) to derive the selling and buying signals. For the selling signals, we sample the values of weekly GTI. The sampled values change a lot when the financial situation reverses from the bull market (a bull ranking in parallel) to the bear market, as depicted in Figure 2. We set the conditions to identify the selling pattern as follows.

\[ triggerSignal_{1W}(t) \]

\[ \text{sell if } (MI_{1W}(t-14) = 1 \quad \text{or} \quad MI_{1W}(t-7) = 1) \quad \text{and} \]

\[ (SMA_{4}(t) < SMA_{9}(t) \quad \text{or} \quad SMA_{4}(t-7) < SMA_{9}(t-7)) \]

\[ \text{unknown otherwise} \]

\[ triggerSignal_{2W}(t) \]

\[ \text{sell if } (MI_{2W}(t-28) = 1 \quad \text{or} \quad MI_{2W}(t-14) = 1) \quad \text{and} \]

\[ (SMA_{4}(t) < SMA_{9}(t) \quad \text{or} \quad SMA_{4}(t-14) < SMA_{9}(t-14)) \]

\[ \text{unknown otherwise} \]
define a scoring function that considers the performance indicators of all funds, during the past 3, 6, 9 months, and 1, 2, 3, 4, 5 years. The formula of the scoring function \( score(x, t) \) is given as follows.

\[
\text{score}(x, t) = \frac{w_{M3}(t)}{\text{rank}(\text{ROI}_{M3}(x, t))} + \frac{w_{M6}(t)}{\text{rank}(\text{ROI}_{M6}(x, t))} + \frac{w_{M9}(t)}{\text{rank}(\text{ROI}_{M9}(x, t))} + \frac{w_{Y3}(t)}{\text{rank}(\text{ROI}_{Y3}(x, t))} + \frac{w_{Y6}(t)}{\text{rank}(\text{ROI}_{Y6}(x, t))} + \frac{w_{Y9}(t)}{\text{rank}(\text{ROI}_{Y9}(x, t))}
\]

where \( w_{M3}(t), w_{M6}(t), \ldots, w_{Y9}(t) \) represent the weights of each ROI of fund \( x \), which are limited in the range \([0, 1]\). In addition, \( \text{rank}(\text{ROI}_T(x, t)) \) means the rank of ROI of fund \( x \) on day \( t \) among all considered funds. According to this scoring function, the rank of each fund varies with different weights. Therefore, to obtain suitable weights for ranking funds, a genetic algorithm is invoked.

In each generation of our genetic algorithm, there are several chromosomes in the population. Each chromosome can be decoded into eight weights for performance indicators \( \text{ROI}_{M3}(x, t), \text{ROI}_{M6}(x, t), \text{ROI}_{M9}(x, t), \text{ROI}_{Y3}(x, t), \text{ROI}_{Y6}(x, t), \text{ROI}_{Y9}(x, t) \). We use these weights to calculate the score of each fund by the scoring function. We put the first \( N \) highest funds into the portfolio.

If the poor funds have not yet been weeded out, the size of the portfolio would remain unchanged, and there is no place to put new funds. Here we define a replacement threshold, denoted as \( \gamma \), for weeding out poor funds. Taking \( |F| = 50 \) and \( \gamma = 40\% \) for example, once the rank of a certain fund falls outside top 20 (= 50 × 40%), this fund has to be replaced by higher ranked funds.
will be redeemed and replaced with a better one having higher priority.

We repeat the training until day \( t_{end} \) (the end of the training). The evolutionary process will try to find the best profit and report the best weights to the system. After training, for a short period of time we can use these best weights to select and invest good funds.

4 Experimental Results

In this section, we will compare our strategy with other well-known strategies. The data set of our experiments is taken from Fund DJ (http://www.funddj.com/) [1]. We select only equity funds with A-type and US dollar. We assume that all of the compared strategies have the same capital in the initial state. In our experiment, we set the initial capital to $1 on 1999/1/1, and evaluate the ending-period capital at the end of 2008. In the following, we use the term \( ROI_{cum} \) to denote the cumulative ROI from 1999/1/1 to 2008/12/31.

4.1 The Motley Fool Investment

The motley fool investment is a very simple and lazy investment rule. At the beginning of every year, we select the only fund whose one-year \( ROI \) (the performance of the previous year) is the best, and put it into the portfolio. At the end of a year, we redeem all fund holdings. The redeemable capital of the funds will be taken as the initial capital for the next year.

4.2 The 4433 Rule

The 4433 rule [1] for investing fund is a simple investment rule, which is well-known in Taiwan. Based on the rule, we can obtain the ending-period capital $2.0768 from 1999/1/1 to 2008/12/31.

4.3 The Best Buy-and-hold Strategy for Ten Years

In this strategy, it is assumed that there exists a very smart investor, who knows which fund has the best performance for ten years. The investment starts from 1999/1/1, and the fund is held until 2008/12/31. If the launch day of this fund is after 1999/1/1, then he would postpone his investment on its launch day.

4.4 The Performance of the One-year Time Deposit

We assume the interest rate of one-year time deposit is 3%. The performance calculation is given as follows:

\[
F_{\text{Future Value}} = 1 \times (1 + 3\%)^{10} = 1.3439,
\]

\[
ROI_{cum} = 34.39\%.
\]

4.5 The MSCI World Price Index and the S&P 500 Composite Price Index

We take the MSCI (Morgan Stanley Capital International) world price index [11] as one of our contrasts. The close prices on 1999/1/1 and 2008/12/31 are 1,149.95 and 920.2, respectively.

As another contrast, we refer to the S&P 500 (Standard and Poor’s 500) composite price index [11]. The close price on 1999/1/4 and 2008/12/31 are 1,228.10 and 903.25, respectively.

4.6 Our Strategy with User-Defined Weights

In these experimental results, we only refer to the MI (monitoring indicator) derived from our GTI (Global Trend Indicator) to determine to buy and sell funds, but do not import the genetic algorithm to our model. We define various constant weights in Table 1, and obtain the relationship between the replacement threshold and cumulative ROI shown in Figure 3. One can see that 10-year cumulative ROI’s are located between 150% to 400% if 20% \( \leq \gamma \leq 90\% \).

Figure 3: The relationship between \( \gamma \) and 10-year cumulative ROI’s with user-defined constant weights for various \( N \).
Table 1: The symbol table for various constant weights.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>( w_3 )</th>
<th>( M_3 )</th>
<th>( w_6 )</th>
<th>( M_6 )</th>
<th>( w_9 )</th>
<th>( M_9 )</th>
<th>( w_1 )</th>
<th>( M_1 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( - )</td>
</tr>
<tr>
<td>( \lambda )</td>
<td>0.857</td>
<td>0.143</td>
<td>0.714</td>
<td>0.286</td>
<td>0.571</td>
<td>0.429</td>
<td>0.333</td>
<td>0.667</td>
</tr>
<tr>
<td>( \Lambda )</td>
<td>0.333</td>
<td>0.667</td>
<td>0.667</td>
<td>0.333</td>
<td>0.333</td>
<td>0.667</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>( v )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>( w )</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>( m )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 4: The relationship between \( \gamma \) and 10-year cumulative ROI's based on GA with various \( N \).

4.7 Our Strategy with Dynamic Weights Obtained by GA

In these experiments, we try to obtain superior weights with genetic algorithms. In our GA, each chromosome is formed by 8 weights, where each weight is encoded by 6 bits. The number of generations is set to 25 and the population size is set to 80. Each GA repeats three times to obtain 3 kinds of superior weights. Finally, we take the best weight that has maximum fitness (ROI). In this way, we avoid the local optima. With various replacement thresholds and the portfolio sizes \( N \), we organize the average cumulative ROI in Figure 4, showing the relationship between the replacement threshold and cumulative ROI. One can see that 10-year cumulative ROI's based on genetic algorithms are located between 150% to 450% if \( 20% \leq \gamma \leq 90% \).

4.8 Our Strategy with Constant Weights Obtained by GA

According to the experimental results of Section 4.7, we find that the best parameters of the best three \( ROI_{cum} \) (420%, 414% and 399%) are \((N = 45, \gamma = 70\%)\), \((N = 55, \gamma = 70\%)\) and \((N = 35, \gamma = 70\%)\), respectively.

With these best parameters, we try to find out the best constant weights, which can be used throughout the whole investment. Therefore, the genetic algorithm is only applied to find the weights at the beginning of the investment. In other words, the weights are not changed in the subsequent selling-and-buying operations. By doing so, we avoid frequent training. Here we use the trading data in the latest three years as our training data for this GA.

Table 2: 10-year cumulative ROI’s of the user-defined constant weights, the dynamic weights obtained by GA, and the constant weights obtained by GA

<table>
<thead>
<tr>
<th>( N )</th>
<th>( 45 )</th>
<th>( 55 )</th>
<th>( 35 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \gamma )</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td>( - )</td>
<td>357%</td>
<td>361%</td>
<td>391%</td>
</tr>
<tr>
<td>( \gamma )</td>
<td>449%</td>
<td>440%</td>
<td>413%</td>
</tr>
<tr>
<td>( \Lambda )</td>
<td>252%</td>
<td>273%</td>
<td>150%</td>
</tr>
<tr>
<td>( \lambda )</td>
<td>267%</td>
<td>314%</td>
<td>375%</td>
</tr>
<tr>
<td>( v )</td>
<td>119%</td>
<td>221%</td>
<td>119%</td>
</tr>
<tr>
<td>( w )</td>
<td>440%</td>
<td>289%</td>
<td>603%</td>
</tr>
<tr>
<td>( M )</td>
<td>281%</td>
<td>344%</td>
<td>271%</td>
</tr>
</tbody>
</table>

Average ROI for dynamical weights based on GA

<table>
<thead>
<tr>
<th>( ROI ) for constant weights based on GA</th>
</tr>
</thead>
<tbody>
<tr>
<td>420%</td>
</tr>
<tr>
<td>314%</td>
</tr>
</tbody>
</table>

5 Conclusion

In this paper, we discuss how to select funds with potential profitability, and to indicate the time
Table 3: Performance comparison for various strategies, where ROI\textsubscript{cum} and AR\textsubscript{cum} denote the cumulative and annualized ROI from 1999/1/1 to 2008/12/31, respectively.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>ROI\textsubscript{cum}</th>
<th>AR\textsubscript{cum}</th>
</tr>
</thead>
<tbody>
<tr>
<td>The motley fool investment</td>
<td>-8.52%</td>
<td>-0.89%</td>
</tr>
<tr>
<td>The 4433 Rule</td>
<td>127.69%</td>
<td>8.58%</td>
</tr>
<tr>
<td>The buy-and-hold strategy with the maximum ROI\textsubscript{cum}</td>
<td>562.19%</td>
<td>20.81%</td>
</tr>
<tr>
<td>The buy-and-hold strategy with the 10th maximum ROI\textsubscript{cum}</td>
<td>256.19%</td>
<td>13.55%</td>
</tr>
<tr>
<td>One-year time deposit</td>
<td>34.39%</td>
<td>3.00%</td>
</tr>
<tr>
<td>MSCI world price index</td>
<td>-19.98%</td>
<td>-2.20%</td>
</tr>
<tr>
<td>S&amp;P 500 composite price index</td>
<td>-26.45%</td>
<td>-3.03%</td>
</tr>
<tr>
<td>User-defined constant weights - best ROI\textsubscript{cum} (N = 30, (\gamma = 60%))</td>
<td>800%</td>
<td>24.57%</td>
</tr>
<tr>
<td>User-defined constant weights - best average ROI\textsubscript{cum} (N = 30, (\gamma = 60%))</td>
<td>396%</td>
<td>17.37%</td>
</tr>
<tr>
<td>User-defined constant weights - worst average ROI\textsubscript{cum} (N = 45, (\gamma = 20%))</td>
<td>151%</td>
<td>10.88%</td>
</tr>
<tr>
<td>User-defined constant weights - worst ROI\textsubscript{cum} (N = 45, (\gamma = 20%))</td>
<td>86%</td>
<td>6.43%</td>
</tr>
<tr>
<td>Constant weights by GA (N = 45, (\gamma = 70%))</td>
<td>611%</td>
<td>15.24%</td>
</tr>
<tr>
<td>Constant weights by GA (N = 35, (\gamma = 70%))</td>
<td>312%</td>
<td>15.21%</td>
</tr>
<tr>
<td>Constant weights by GA (N = 35, (\gamma = 70%))</td>
<td>312%</td>
<td>15.21%</td>
</tr>
<tr>
<td>Dynamic weights by GA - best ROI\textsubscript{cum} (N = 20, (\gamma = 70%))</td>
<td>954%</td>
<td>26.56%</td>
</tr>
<tr>
<td>Dynamic weights by GA - best average ROI\textsubscript{cum} (N = 45, (\gamma = 100%))</td>
<td>420%</td>
<td>17.92%</td>
</tr>
<tr>
<td>Dynamic weights by GA - worst average ROI\textsubscript{cum} (N = 45, (\gamma = 100%))</td>
<td>137%</td>
<td>10.77%</td>
</tr>
<tr>
<td>Dynamic weights by GA - worst ROI\textsubscript{cum} (N = 60, (\gamma = 40%))</td>
<td>66%</td>
<td>5.2%</td>
</tr>
</tbody>
</table>

points for buying or selling funds. In this way, we can avoid the financial turmoil or turbulence, and reduce the investment loss. Our experiments are different from those done by other researchers, since we take transaction fees into account. We suggest investors to take the investment strategy with dynamic weights based on GA, which makes an excellent profit (high annual return) in our simulation. One can see that our strategy outperforms others, because it provides good buying and selling points to investors.

References


